Tuesday, July 8, 2008

People have been fishing for thousands of years. Every person fishing has had the same problem - finding fish and getting them to bite. Although sonar can’t make the fish bite, it can solve the problem of finding fish. You can’t catch them if you’re not fishing where they are - and the Lowrance sonar will prove it

In the late 1950s, Carl Lowrance and his sons Arlen and Darrell began scuba diving to observe fish and their habits. This research, substantiated by local and federal government studies, found that about 90 percent of the fish congregated in 10 percent of the water on inland lakes. As environmental conditions changed, the fish would move to more favorable areas. Their dives confirmed that most species of fish are affected by underwater structure (such as trees, weeds, rocks, and drop-offs), temperature, current, sunlight and wind. These and other factors also influence the location of food (baitfish, algae and plankton). Together, these factors create conditions that cause frequent relocation of fish populations.
During this time, a few people were using large, cumbersome sonar units on fishing boats. Working at low frequencies, these units used vacuum tubes which required car batteries to keep them running. Although they would show a satisfactory bottom signal and large schools of fish, they couldn’t show individual fish. Carl and his sons began to conceptualize a compact, battery operated sonar that could detect individual fish. After years of research, development, struggle and simple hard work, a sonar was produced that changed the fishing world forever. Out of this simple beginning, a new industry was formed in 1957 with the sale of the first transistorized sportfishing sonar. In 1959, Lowrance introduced “The Little Green Box,” which became the most popular sonar instrument in the world. All transistorized, it was the first successful sportfishing sonar unit. More than a million were made until 1984, when it was discontinued due to high production costs. We’ve come a long way since 1957. From “little green boxes” to the latest in sonar and GPS technology, Lowrance continues to lead in the world of sportfishing sonar.

How it Works

The word "sonar" is an abbreviation for "SOund, NAvigation and Ranging." It was developed as a means of tracking enemy submarines during World War II. A sonar consists of a transmitter, transducer, receiver and display.

In the simplest terms, an electrical impulse from a transmitter is converted into a sound wave by the transducer and sent into the water. When this wave strikes an object, it rebounds. This echo strikes the transducer, which converts it back into an electric signal, which is amplified by the receiver and sent to the display. Since the speed of sound in water is constant (approximately 4800 feet per second), the time lapse between the transmitted signal and the received echo can be measured and the distance to the object determined. This process repeats itself many times per second.

The frequencies most often used by Lowrance in our sonar are 192 - 200 kHz (kilohertz); we also make some units that use 50 kHz. Although these frequencies are in the sound spectrum, they’re inaudible to both humans and fish. (You don’t have to worry about the sonar unit spooking the fish - they can’t hear it.)

As mentioned earlier, the sonar unit sends and receives signals, then “prints” the echo on the display. Since this happens many times per second, a continuous line is drawn across the display, showing the bottom signal. In addition, echoes returned from any object in the water between the surface and bottom are also displayed. By knowing the speed of sound through water (4800 feet per second) and the time it takes for the echo to be received, the unit can show the depth of the water and any fish in the water.

Fishing Minnesota Electronics-Best Prices For Fishfinders and GPS Units On The Net!




For More Info Go To:Lowrance Electronics

No comments: